

WEBINAR 3

Fundamentos de Matemática

Uma visão didática do NT5 e aplicações em RH

Prof. Dr. Reinaldo A. Vargas

Função do 2º Grau

A chamada "Função do 2º Grau"

1. Definição de função do segundo grau:

Define-se por função quadrática ou função polinomial do 2º grau, toda função f de R em R dada pela lei de formação $f(x) = ax^2 + bx + c$, tal que, a, b e c são números reais e $a \neq 0$.

São exemplos de funções do 2º grau:

a)
$$f(x) = x^2 + 4x$$
, onde $a = 1$, $b = 4$ e $c = 0$ (função incompleta)

b)
$$f(x) = 3x^2 - 5$$
, onde $a = 3$, $b = 0$ e $c = -5$ (função incompleta)

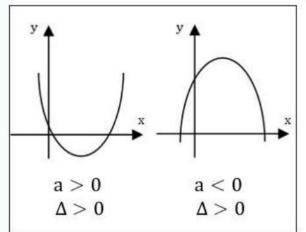
c)
$$f(x) = -3x^2 + 4x + 8$$
, onde $a = -3$, $b = 4$ e $c = 8$ (função completa)

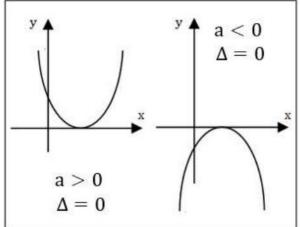
Como calcular as chamadas "raízes" da equação do 2º Grau

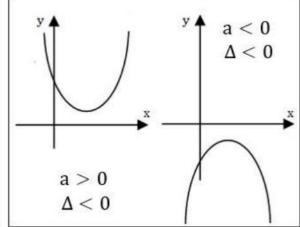
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{ou} \quad x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Exemplo:

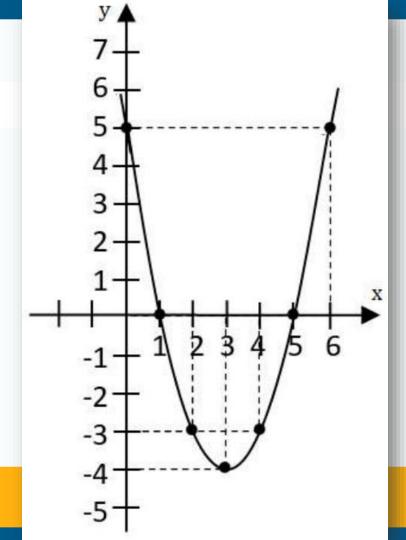
Determinar as raízes (zeros) da função $f(x) = x^2 - 6x + 5$.


$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \Rightarrow x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} \Rightarrow x = \frac{6 \pm \sqrt{36 - 20}}{2} \Rightarrow x = \frac{6 \pm \sqrt{16}}{2} \Rightarrow x = \frac{6 \pm 4}{2} \Rightarrow x = \frac{6 \pm$$


Portanto, as raízes da função $f(x) = x^2 - 6x + 5$ são x' = 5 e x'' = 1.



Agora, observem como ficará a representação gráfica:



Como montar o gráfico? 1º) Monte uma tabelinha assim:

x	$f(x) = x^2 - 6x + 5$	(x; y)
0	$f(0) = 0^2 - 6 \cdot 0 + 5 = 0 - 0 + 5 = 5$	(0; 5)
2	$f(2) = 2^2 - 6 \cdot 2 + 5 = 4 - 12 + 5 = -3$	(2; -3)
4	$f(4) = 4^2 - 6 \cdot 4 + 5 = 16 - 24 + 5 = -3$	(4; -3)
6	$f(6) = 6^2 - 6 \cdot 6 + 5 = 36 - 36 + 5 = 5$	(6; 5)

2º) Montar o gráfico com os pontos marcados

#vempra**FaSouza**

Exemplos de aplicações na área de Recursos Humanos:

Exemplos de aplicações na área de Recursos Humanos:

Previsão de Turnover: O turnover, ou rotatividade de funcionários, é uma preocupação importante para o departamento de RH. Suponha que uma empresa queira prever seu turnover trimestral com base em vários fatores, como satisfação no trabalho, salário médio, e benefícios oferecidos. Eles podem usar uma equação do segundo grau para modelar essa relação e prever o turnover esperado para um trimestre futuro.

Obs: O turnover é a taxa de rotatividade de colaboradores de uma empresa

Exemplos de aplicações na área de Recursos Humanos:

Determinação de Benefícios Empregatícios: As empresas frequentemente oferecem benefícios aos funcionários, como planos de saúde ou programas de aposentadoria. Para determinar o custo desses benefícios, o RH pode usar uma equação do segundo grau que leve em consideração o número de funcionários que optam por esses benefícios em relação ao custo total dos benefícios. Isso pode ajudar a empresa a ajustar seus pacotes de benefícios para garantir que sejam sustentáveis financeiramente.

Muito Obrigado!

